问题标题:
设最简两次根式√a方-2b+2与√2a-b方是同类两次根式,问a与b是否存在?诺存在,求出a方+b方的值;诺不存在,请说明理由.
问题描述:
设最简两次根式√a方-2b+2与√2a-b方是同类两次根式,问a与b是否存在?诺存在,求出a方+b方的值;诺不存在,请说明理由.
韩铁如回答:
最简且是同类两次根式所以a²-2b+2=2a-b²(a²-2a+1)+(b²-2b+1)=0(a-1)²+(b-1)²=0所以a=1,b=1则a²-2b+2=2a-b²=1,可以成立所以存在a²+b²=1+1=2...
点击显示
数学推荐
热门数学推荐