问题标题:
“三等分一个角”是数学史上一个著名问题.今天人们已经知道,仅用圆规和直尺是不可能作出的,在探索中,有人曾利用过如下的图形:其中,ABCD是长方形,F是DA延长线上一点,G是CF上一
问题描述:
“三等分一个角”是数学史上一个著名问题.今天人们已经知道,仅用圆规和直尺是不可能作出的,在探索中,有人曾利用过如下的图形:其中,ABCD是长方形,F是DA延长线上一点,G是CF上一点,并且∠ACG=∠AGC,∠GAF=∠GFA,你能证明∠ECB=
崔松林回答:
证明:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠F=∠ECB,
∴∠ACG=∠AGC=∠GAF+∠F=2∠F
=2∠ECB,
∴∠ACB=∠ACG+∠ECB=3∠ECB,
∴∠ECB=13
点击显示
数学推荐
热门数学推荐