字典翻译 问答 初中 数学 初二数学《多边形的内角和与外角和》1.一个n边形的内角和与一个外角之和为680°,求n及此外角的度数2.一个正多边形的每个内角都为钝角,则这样的正多边形有多少个?边数最少的一个是几边
问题标题:
初二数学《多边形的内角和与外角和》1.一个n边形的内角和与一个外角之和为680°,求n及此外角的度数2.一个正多边形的每个内角都为钝角,则这样的正多边形有多少个?边数最少的一个是几边
问题描述:

初二数学《多边形的内角和与外角和》

1.一个n边形的内角和与一个外角之和为680°,求n及此外角的度数

2.一个正多边形的每个内角都为钝角,则这样的正多边形有多少个?边数最少的一个是几边形?

汤学明回答:
  1、因为n边形的内角和=(n-2)×180°,(n>2且n为整数),所以可假设此外角为0°,此时680°÷180°=n-2,而n>2且n为整数,故(n-2)>0且为整数,又680°÷180°=3······140°,故假设不成立,所以n-2=3,即n=5,此外角...
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 政治
  • 地理
  • 历史
  • 化学
  • 生物
  • 物理
  • 音乐
  • 体育
  • 美术