字典翻译 问答 高中 数学 一道简洁的数学证明题,自己想的求证:N^5-N=30K,(N,K∈Z)最好不用讨论分几种情况~下面是不用讨论的方法:发现Y=(N-1)N(N+1)(N+2)(N+3)能被30整除,将其变形为(N-1)N(N+1)(N²+5N+6)=(N-1)N(N+1)(N²+1+
问题标题:
一道简洁的数学证明题,自己想的求证:N^5-N=30K,(N,K∈Z)最好不用讨论分几种情况~下面是不用讨论的方法:发现Y=(N-1)N(N+1)(N+2)(N+3)能被30整除,将其变形为(N-1)N(N+1)(N²+5N+6)=(N-1)N(N+1)(N²+1+
问题描述:

一道简洁的数学证明题,自己想的

求证:N^5-N=30K,(N,K∈Z)

最好不用讨论分几种情况~

下面是不用讨论的方法:

发现Y=(N-1)N(N+1)(N+2)(N+3)能被30整除,将其变形为(N-1)N(N+1)(N²+5N+6)=(N-1)N(N+1)(N²+1+5N+5)=(N-1)N(N+1)(N²+1)+(N-1)N(N+1)(5N+5)=N^5-N+5(N-1)N(N+1)²

因为5(N-1)N(N+1)²一定能被30整除,又Y=(N-1)N(N+1)(N+2)(N+3)=N^5-N+5(N-1)N(N+1)²能被30整除,所以

N^5-N=30K,(N,K∈Z)得证。

刘若辰回答:
  思路就是证明做边的式子可以被2,3,5整除左边=n(n+1)(n-1)(n^2+1)n(n+1)(n-1)很容易得到可以被23整除设n=5x+aa=0n=5xa=1n-1=5xa=4n+1=5x+5这三种情况,很明显n(n+1)(n-1)可以被5整除a=2n=5x+2n^2+1=(5x+2)^2+1=2...
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 政治
  • 地理
  • 历史
  • 化学
  • 生物
  • 物理
  • 综合
  • 高考