问题标题:
已知圆C1与圆C2相交于A(1,3)和B(m,1)两圆的圆心都在直线x-y+c/2=0上,设C(c,0),求A、B、C三点的圆的方程
问题描述:
已知圆C1与圆C2相交于A(1,3)和B(m,1)两圆的圆心都在直线x-y+c/2=0上,设C(c,0),求A、B、C三点的圆的方程
程思雅回答:
圆C1、C2的圆心都在直线x-y+c/2=0上,因此C1C2丄AB,因此(3-1)/(1-m)=-1,解得m=3,由于直线C1C2是线段AB的中垂线,因此AB的中点(2,2)满足方程x-y+c/2=0,代入得c=0,设过A、B、C的圆的方程为x^...
点击显示
数学推荐
热门数学推荐