字典翻译 问答 小学 数学 F1和F2分别是双曲线x2/a2-y2/b2=1(a>b>0)的两个焦点,A和B是以O为圆心,以OF1为半径的圆与该双曲线左支的两个交点,且F2AB是等边三角形,则双曲线的离心率为?
问题标题:
F1和F2分别是双曲线x2/a2-y2/b2=1(a>b>0)的两个焦点,A和B是以O为圆心,以OF1为半径的圆与该双曲线左支的两个交点,且F2AB是等边三角形,则双曲线的离心率为?
问题描述:

F1和F2分别是双曲线x2/a2-y2/b2=1(a>b>0)的两个焦点,A和B是以O为圆心,以OF1为半径的圆与该双曲线左支的两个交点,且F2AB是等边三角形,则双曲线的离心率为?

蒋泽明回答:
  连接AF1,则∠F1AF2=90°,∠AF2B=60°   ∴|AF1|=1/2|F1F2|=c,   |AF2|=√3/2|F1F2|=√3c,   ∴√3c-c=2a,   ∴e=c/a=1+√3   望采纳,若不懂,请追问.
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 科学
  • 作文