字典翻译 问答 初中 数学 【八年级上册数学因式分解题目。300道。有多少给多少。越多越好类似2X(Y-Z)+4Y(Y-Z)。这种简单题目的。最好带答案。】
问题标题:
【八年级上册数学因式分解题目。300道。有多少给多少。越多越好类似2X(Y-Z)+4Y(Y-Z)。这种简单题目的。最好带答案。】
问题描述:

八年级上册数学因式分解题目。300道。有多少给多少。越多越好

类似2X(Y-Z)+4Y(Y-Z)。这种简单题目的。最好带答案。

程洪书回答:
  (1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解(1)原式=-2xn-1yn(x4n-2x2ny2+y4)=-2xn-1yn[(x2n)2-2x2ny2+(y2)2]=-2xn-1yn(x2n-y2)2=-2xn-1yn(xn-y)2(xn+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解(1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=〔(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=〔(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)〔b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解(1)原式=-2xn-1yn(x4n-2x2ny2+y4)=-2xn-1yn[(x2n)2-2x2ny2+(y2)2]=-2xn-1yn(x2n-y2)2=-2xn-1yn(xn-y)2(xn+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解(1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=〔(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=〔(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)〔b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.一、选择题1.已知y2+my+16是完全平方式,则m的值是()A.8B.4C.±8D.±42.下列多项式能用完全平方公式分解因式的是()A.x2-6x-9B.a2-16a+32C.x2-2xy+4y2D.4a2-4a+13.下列各式属于正确分解因式的是()A.1+4x2=(1+2x)2B.6a-9-a2=-(a-3)2C.1+4m-4m2=(1-2m)2D.x2+xy+y2=(x+y)24.把x4-2x2y2+y4分解因式,结果是()A.(x-y)4B.(x2-y2)4C.[(x+y)(x-y)]2D.(x+y)2(x-y)2二、填空题5.已知9x2-6xy+k是完全平方式,则k的值是________.6.9a2+(________)+25b2=(3a-5b)27.-4x2+4xy+(_______)=-(_______).8.已知a2+14a+49=25,则a的值是_________.三、解答题9.把下列各式分解因式:①a2+10a+25②m2-12mn+36n2③xy3-2x2y2+x3y④(x2+4y2)2-16x2y210.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.11.已
汪乐宇回答:
  +1。()21.下列那一个式子不是9x2-25的因式?(1)3x+5(2)3x-5(3)9x+5(4)9x2-25。()22.因式分解x2-3x+2=(x+a)(a+b)则(1)a+b=3(2)a>0,b<0(3)ab=-2(4)a>0,b>0。()23.下列各二次式,何者有因式x-1?(1)x2+5x+6(2)x2-5x-6(3)x2+5x-6(4)x2-5x+6。()24.(-x+y)2等於(1)-(x-y)2(2)(x-y)2(3)(x+y)2(4)(-x-y)2。()25.若x+y=-5,x-y=15,则x2-y2=(1)-5(2)-1(3)-15(4)1。()26.x2+px+q=(x+a)(x+b),若a<0,b<0,则(1)p>0(2)q<0(3)pq>0(4)q>0。()27.若(x-5)2-(x-5)-12可分解为(x+a)(x+b),则a+b等於(1)-11(2)9(3)11(4)-9。()28.ax-cx-by+cy+bx-ay可分解为下列何式?(1)(x-y)(a-b-c)(2)(x+y)(a+b-c)(3)(x-y)(a-b+c)(4)(x-y)(a+b-c)。()29.下列何者正确?(1)x2+2ax+x=x(x+2a)(2)2x2-8=x2-4=(x-2)(x+2)(3)36x2-84x+49=(7-6x)2(4)x2-6=(x-2)(x+3)。二、填充题1.若2x3+3x2+mx+1为x+1的倍式,则m=2.因式分解3a3b2c-6a2b2c2+9ab2c3=3.因式分解xy+6-2x-3y=4.因式分解x2(x-y)+y2(y-x)=5.因式分解2x2-(a-2b)x-ab=6.因式分解a4-9a2b2=7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=8.因式分解ab(x2-y2)+xy(a2-b2)=9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=10.因式分解a2-a-b2-b=11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=12.因式分解(a+3)2-6(a+3)=13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=14.若2×4×(32+1)×(34+1)×(38+1)×(316+1)=3n-1,求n=。15.利用平方差公式,求标准分解式4891=。16.2x+1是不是4x2+5x-1的因式?答:。17.若6x2-7x+m是2x-3的倍式,则m=18.x2+2x+1与x2-1的公因式为。19.若x+2是x2+kx-8的因式,求k=。20.若4x2+8x+3是2x+1的倍式请因式分解4x2+8x+3=。21.2x+1是4x2+8x+3的因式,请因式分解4x2+8x+3=。22.(1)x+2(2)x+4(3)x+6(4)x-6(5)x2+2x3+24上列何者x2-2x-24的因式(全对才给分)23.因式分解下列各式:(1)abc+ab-4a=。(2)16x2-81=。(3)9x2-30x+25=。(4)x2-7x-30=。24.若x2+ax-12=(x+b)(x-2),其中a、b均为整数,则ab=。25.请将适当的数填入空格中:x2-16x+=(x-)2。26.因式分解下列各式:(1)xy-xz+x=;(2)6(x+1)-y(x+1)=(3)x2-5x-px+5p=;(4)15x2-11x-14=27.设7x2-19x-6=(7x+a)(bx-3),且a,b为整数,则2a+b=28.利用乘法公式展开99982-4=。29.计算(1.99)2-4×1.99+4之值为。30.若x2+ax-12可分解为(x+6)(x+b),且a,b为整数,则a+b=。31.已知9x2-mx+25=(3x-n)2,且n为正整数,则m+n=。32.若2x3+11x2+18x+9=(x+1)(ax+3)(x+b),则a-b=。33.2992-3992=34.填入适当的数使其能成为完全平方式4x2-20x+。35.因式分解x2-25=。36.因式分解x2-20x+100=。37.因式分解x2+4x+3=。38.因式分解4x2-12x+5=。39.因式分解下列各式:(1)3ax2-6ax=。(2)x(x+2)-x=。(3)x2-4x-ax+4a=。(4)25x2-49=。(5)36x2-60x+25=。(6)4x2+12x+9=。(7)x2-9x+18=。(8)2x2-5x-3=。(9)12x2-50x+8=。40.因式分解(x+2)(x-3)+(x+2)(x+4)=。41.因式分解2ax2-3x+2ax-3=。42.因式分解9x2-66x+121=。43.因式分解8-2x2=。44.因式分解x2-x+14=。45.因式分解9x2-30x+25=。46.因式分解-20x2+9x+20=。47.因式分解12x2-29x+15=。48.因式分解36x2+39x+9=。49.因式分解21x2-31x-22=。50.因式分解9x4-35x2-4=。51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=。52.因式分解2ax2-3x+2ax-3=。53.因式分解x(y+2)-x-y-1=。54.因式分解(x2-3x)+(x-3)2=。55.因式分解9x2-66x+121=。56.因式分解8-2x2=。57.因式分解x4-1=。58.因式分解x2+4x-xy-2y+4=。59.因式分解4x2-12x+5=。60.因式分解21x2-31x-22=。61.因式分解4x2+4xy+y2-4x-2y-3=。62.因式分解9x5-35x3-4x=。63.因式分解下列各式:(1)3x2-6x=。(2)49x2-25=。(3)6x2-13x+5=。(4)x2+2-3x=。(5)12x2-23x-24=。(6)(x+6)(x-6)-(x-6)=。(7)3(x+2)(x-5)-(x+2)(x-3)=。(8)9x2+42x+49=。64.9x2-30x+k可化为完全平方式(3x+a)2,则k=a=。65.若x2+mx-15可分解为(x+n)(x-3),m、n皆为整数,则m=n=。66.求下列各式的和或差或积或商。(1)(6512)2-(3412)2=。(2)(7913)2+2×7913×23+49=。(3)1998×0.48-798×0.48-798×0.52+1998×0.52=。
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 政治
  • 地理
  • 历史
  • 化学
  • 生物
  • 物理
  • 音乐
  • 体育
  • 美术