问题标题:
【如图,在正方形ABCD中,点E时CD边上一点,AF⊥AE交CB的延长线于点F,连接DF分别交于AE、AB于点C、P连接PE.(1)求证:AE=AF;(2)若AD=2,求当DE为何值时,四边形APED是矩形.】
问题描述:
如图,在正方形ABCD中,点E时CD边上一点,AF⊥AE交CB的延长线于点F,连接DF分别交于AE、AB于点C、P连接PE.
(1)求证:AE=AF;
(2)若AD=2,求当DE为何值时,四边形APED是矩形.
刘绍龙回答:
证明:(1)∵四边形ABCD是正方形,
∴∠ADE=∠ABC=∠DAB=90°,AD=AB,AD∥BC,AB∥CD,
∵AF⊥AE,
∴∠EAF=90°,
∴∠DAE=∠BAF,
在△ADE和△ABF中,
∠DAE=∠BAFAD=AB∠ADE=∠ABF
点击显示
数学推荐
热门数学推荐