问题标题:
【证明实系数线性方程组AX=B有解的充要条件是用它的常数项依次构成的列向量B与它所对应的齐次线性方程组AX=0】
问题描述:
证明实系数线性方程组AX=B有解的充要条件是用它的常数项依次构成的列向量B与它所对应的齐次线性方程组AX=0
苏建林回答:
证明实系数线性方程组AX=B有解的充要条件是用它的常数项依次构成的列向量B与它所对应的齐次线性方程组AX=0的解空间正交.这不成立!增广矩阵(A,B)=-110-2-3-2-3-1-3-2-3-1通解为:(1,-1,0)^T+c(3,3,-5)^T.B...
点击显示
其它推荐