问题标题:
求证:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.
问题描述:
求证:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.
程洪回答:
证明:法一:原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b)”.
若a+b<0,则a<-b,b<-a,
又∵f(x)是(-∞,+∞)上的增函数,
∴f(a)<f(-b),f(b)<f(-a),
∴f(a)+f(b)<f(-a)+f(-b).
即原命题的逆否命题为真命题,
∴原命题为真命题.
法二:假设a+b<0,则a<-b,b<-a,
又∵f(x)在(-∞,+∞)上是增函数,
∴f(a)<f(-b),f(b)<f(-a),
∴f(a)+f(b)<f(-a)+f(-b),
这与已知f(a)+f(b)≥f(-a)+f(-b)相矛盾,
因此假设不成立,故a+b≥0.
点击显示
数学推荐
热门数学推荐