问题标题:
一道数学题(没弄懂)罗尔中值定理:如果函数f(x)满足以下条件:①在闭区间[a,b]上连续,②在(a,b)内可导,③f(a)=f(b),则至少存在一个ξ∈(a,b),使得f'(ξ)=0.用罗尔中值定理证明
问题描述:
一道数学题(没弄懂)
罗尔中值定理:
如果函数f(x)满足以下条件:
①在闭区间[a,b]上连续,
②在(a,b)内可导,
③f(a)=f(b),
则至少存在一个ξ∈(a,b),使得f'(ξ)=0.
用罗尔中值定理证明:方程3ax^2+2bx-(a+b)=0在(0,1)内有实根.
设F(x)=ax^3+bx^2-(a+b)x,则F(x)在[0,1]上连续,在(0,1)内可导,F(0)=F(1)=0,所以由罗尔中值定理,至少存在一点ξ∈(0,1)
我想问,为什么要设F(x),F(x)应该是3ax^2+2bx-(a+b)=0的原函数了,但是罗尔中值定理里面并没有要求你去使用函数的原函数啊?但是这种罗尔中值证明类型的题目怎么一开头都是写出函数的原函数啊?这是怎么回事?
陈在礼回答:
是,确实没让你求原函数,但是如果你不知道原函数的话,你怎么确定你定理中的第③个条件:
f(a)=f(b)
那如果你没办法确定这一个条件的话,你是不是就没办法使用这个定理了.
所以一开始就把原函数写出来,我们就能确定对于区间[a,b],是不是能满足f(a)=f(b)
当然,如果你能通过别的方法确定f(a)=f(b),那你不用到原函数也是没有问题的
点击显示
数学推荐
热门数学推荐