字典翻译 问答 小学 数学 【罗素悖论定义把所有集合分为2类,第一类中的集合以其自身为元素,第二类中的集合不以自身为元素,假令第一类集合所组成的集合为P,第二类所组成的集合为Q,于是有:P={A∣A∈A}Q={A∣A¢A}(¢】
问题标题:
【罗素悖论定义把所有集合分为2类,第一类中的集合以其自身为元素,第二类中的集合不以自身为元素,假令第一类集合所组成的集合为P,第二类所组成的集合为Q,于是有:P={A∣A∈A}Q={A∣A¢A}(¢】
问题描述:

罗素悖论定义

把所有集合分为2类,第一类中的集合以其自身为元素,第二类中的集合不以自身为元素,假令第一类集合所组成的集合为P,第二类所组成的集合为Q,于是有:

P={A∣A∈A}

Q={A∣A¢A}(¢:不属于的符号,因为实在找不到)

问,Q∈P还是Q∈Q?

其中的A∈A及A¢A如何理解?

自身属于自身以及自身不属于自身怎么理解?

韩燕波回答:
  q指不属于自身的类   p指属于自身的类   a是指类中的项,A∈A就是属于自身的项,A¢A就是不属于自身的项(要联系类看,Q就是指由不属于自身的项构成的一个类)   于是q假如属于p,则明显与定义相悖;   q假如不属于p,因为p是指属于自身的类,那么q就是不属于自身的类,这样和q的定义相符了,又是应该是属于自身的类,反而是属于p了.   于是无论作何选择都会产生悖论   简单点说,有个理发师悖论比较类似:   在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城.我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸.我对各位表示热诚欢迎!”来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人.可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸.
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 科学
  • 作文