问题标题:
【如图,已知,AB=CD,DE⊥AC,BF⊥AC,E、F是垂足,DE=BF.求证:AF=CE.】
问题描述:
如图,已知,AB=CD,DE⊥AC,BF⊥AC,E、F是垂足,DE=BF.
求证:AF=CE.
台毅民回答:
证明:∵DE⊥AC,BF⊥AC(已知),
∴∠CED=∠AFB=90°;
在Rt△AFB与Rt△CED中,
AB=CD,BF=DE(已知),
∴Rt△AFB≌Rt△CED(HL);
∴AF=CE(全等三角形的对应边相等).
点击显示
其它推荐
热门其它推荐