问题标题:
如图1,以△ABC的边AB、AC为边向内作正方形ABFG和正方形ACDE,M是DF的中点,N是BC的中点,连接MN.探究线段MN与BC之间的关系,并加以证明.说明:如果你经过反复探索没有解决问题,可以从下
问题描述:
如图1,以△ABC的边AB、AC为边向内作正方形ABFG和正方形ACDE,M是DF的中点,N是BC的中点,连接MN.探究线段MN与BC之间的关系,并加以证明.
说明:如果你经过反复探索没有解决问题,可以从下面①、②中选取一种情况完成你的证明,选取①比原题少得6分,选取②比原题少得8分.
①如图2,将正方形ACDE绕点A旋转,使点C、E分别落在AG、AB上;
②如图3,将正方形ACDE绕点A旋转,使点B、A、C在一条直线.
黄鲜萍回答:
BC⊥MN.
证明:连接CM,然后延长CM至H,使CM=MH,连接FH、BH、CM、BM,HG、CG,延长CD,与BF相交于I,
∵MF=MD,CM=HM,∠CMD=∠HMF,
∴△CMD≌△HMF,
∴AC=HF=CD,
∴∠HFG=180°-∠GHF-∠HGF,
∴∠HGF=∠DCM,∠GHF=∠IGC,
∠BIC=∠IGC+∠DCM,
∵∠BAC=360°-∠ABI-∠ACI-∠BIC=180°-∠BIC=180°-∠IGC-∠DCM=180°-∠GHF-∠HGF=∠HFB,
∴△ABC≌△FBH,
∵四边形ABIC中∠ABI=∠ACI=90°,
∴∠HBF=∠ABC,
∵∠CBH=∠HBF+∠CBF=∠ABC+∠CBF=90°,
∴BC⊥BH,
∵N是BC中点,M是HC中点,
∴MN∥BH,
∴BC⊥MN.
点击显示
数学推荐
热门数学推荐