字典翻译 问答 其它 怎么证明两角和的余弦公式Cos(x+y)=CosxCosy-SinxSiny
问题标题:
怎么证明两角和的余弦公式Cos(x+y)=CosxCosy-SinxSiny
问题描述:

怎么证明两角和的余弦公式Cos(x+y)=CosxCosy-SinxSiny

陈辛波回答:
  第一个公式的证明:   右边=2*sin[(A+B)/2]*cos[(A-B)/2]   =2*[sin(A/2)*cos(B/2)+cos(A/2)sin(B/2)]*[cos(A/2)cos(B/2)+sin(A/2)sin(B/2)]   =2*sin(A/2)*cos(A/2)*cos(B/2)*cos(B/2)+2*cos(A/2)*cos(A/2)*sin(B/2)*cos(B/2)+2*sin(A/2)*sin(A/2)*cos(B/2)*sin(B/2)+2*sin(A/2)*cos(A/2)*sin(B/2)*sin(B/2)   =sinA*[cos(B/2)*cos(B/2)+sin(B/2)*sin(B/2)]+sin(B/2)*[cos(B/2)*cos(B/2)+sin(B/2)*sin(B/2)]   =sinA+sinB=左边   证毕   其中用到公式:   sinA=2*sin(A/2)*cos(A/2),sinB=2*cos(B/2)*sin(B/2)   cos(B/2)*cos(B/2)+sin(B/2)*sin(B/2)=1   其他的公式依此类推,自己推推看吧!
点击显示
其它推荐
热门其它推荐
  • 其它