字典翻译 问答 小学 数学 (1/2+1/3+··1/2010)(1+1/2+1/3··+1/2009)-(1/2+1/3··+1/2009)(1+1/2+1/3··1/2010)等于多少
问题标题:
(1/2+1/3+··1/2010)(1+1/2+1/3··+1/2009)-(1/2+1/3··+1/2009)(1+1/2+1/3··1/2010)等于多少
问题描述:

(1/2+1/3+··1/2010)(1+1/2+1/3··+1/2009)-(1/2+1/3··+1/2009)(1+1/2+1/3··1/2010)等于多少

李正莉回答:
  第一个括号里先+1再-1,也就是变成(1+1/2+1/3+1/4+...+1/2010-1)   式子就变成【(1+1/2+1/3+1/4+...+1/2010)-1】(1+1/2+1/3+...+1/2009)-(1+1/2+1/3+...+1/2010)(1/2+1/3+1/4+...+1/2009)   把前两个乘积按分配律展开,就变成:(1+1/2+1/3+1/4+...+1/2010)(1+1/2+1/3+...+1/2009)-1×(1+1/2+1/3+...+1/2009)-(1+1/2+1/3+...+1/2010)(1/2+1/3+1/4+...+1/2009)   =(1+1/2+1/3+1/4+...+1/2010)(1+1/2+1/3+...+1/2009)-(1+1/2+1/3+...+1/2010)(1/2+1/3+1/4+...+1/2009)-1×(1+1/2+1/3+...+1/2009)   =(1+1/2+1/3+1/4+...+1/2010)【(1+1/2+1/3+...+1/2009)-(1/2+1/3+1/4+...+1/2009)】-1×(1+1/2+1/3+...+1/2009)   =(1+1/2+1/3+1/4+...+1/2010)-(1+1/2+1/3+...+1/2009)   =1/2010
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 科学
  • 作文