问题标题:
【数学.1,若存在过点(1,0)的直线与曲线y=x^3和y=ax^2+15/4x-9都相切,则a等于?2,已知函数f(x)=(1+cotx)sin^2x-2sin(x+兀/4)sin(x-兀/4).若tan=2.求f(a)?】
问题描述:
数学.1,若存在过点(1,0)的直线与曲线y=x^3和y=ax^2+15/4x-9都相切,则a等于?
2,已知函数f(x)=(1+cotx)sin^2x-2sin(x+兀/4)sin(x-兀/4).若tan=2.求f(a)?
黄飞跃回答:
y=x^3导数为y=3x^2,直线与其切点为(m,m^3)
则直线过(m,m^3),(1,0)
求得直线为y=0或者y=27/4*(x-1)
若y=0.则y=ax^2+15/4x-9顶点在x轴
得a=-25/64
若y=27/4*(x-1),斜率为27/4
y=ax^2+15/4x-9导数为y=2ax+15/4,
直线与其切点为(n,an^2+15/4n-9)
2an+15/4=27/4
n=3/(2a)
直线过(3/2,27/8),(1,0)(3/(2a),(63-72a)/8a)
推出a=-1
所以a=-25/64或者a=-1
sin^2a+cos^2a=1,得sin^2a=4/5
f(x)=(1+1/tanx)sin^2-2sin(x+π/4)sin(x-π/4).
=sinx(cosx+sinx)+2sin(x+π/4)cos(x+π/4)
=1/2sin2x+sin^2x+sin(2x+π/2)
=1/2sin2x+1/2-1/2cos2x+cos2x
=(sin2x+cos2x+1)/2
tana=sina/cosa=2,所以sin^2a=4cos^2a,即1-cos2a=4*(1+cos2a)得cos2a=-3/5
sin2a=2sinacosa/(sin^2a+cos^2a)=2tana/(tan^2a+1)=4/5
所以f(a)=1/2*(4/5-3/5+1)=3/5
点击显示
数学推荐
热门数学推荐