问题标题:
【z=z(x,y)定义在全平面上,(1)若f'x(x,y)=0,试证z=f(y);(2)若f'xy(x,y)=0,试证z=g(x)+f(y)是偏导数和全微分这一章的题】
问题描述:
z=z(x,y)定义在全平面上,(1)若f'x(x,y)=0,试证z=f(y);(2)若f'xy(x,y)=0,试证z=g(x)+f(y)
是偏导数和全微分这一章的题
陶余会回答:
1、由单变元的微分中值定理,有f(x,y)-f(x0,y)=f'x(c,y)*(x-x0)=0,于是f(x,y)的值只与y有关,故z=f(y).2、由1知道,当f'xy(x,y)=0时,f'y(x,y)是y的函数,即f'y(x,y)=h(y),于是f(x,y)=h(y)的不定积分=s(y)+C(x),...
点击显示
数学推荐
热门数学推荐