问题标题:
两道分式数学题已知1/x+1/y=3则x+y+xy+2y²/2xy+y²=?已知x+1/x=3求x²/x^4+x²+1的值题目为已知1/x+1/y=3则(x+y+xy+2y²)/(2xy+y²)=?已知(x+1)/x=3求x²/(x^4+x²+1)的值
问题描述:
两道分式数学题
已知1/x+1/y=3则x+y+xy+2y²/2xy+y²=?
已知x+1/x=3求x²/x^4+x²+1的值
题目为
已知1/x+1/y=3则(x+y+xy+2y²)/(2xy+y²)=?
已知(x+1)/x=3求x²/(x^4+x²+1)的值
黄朝兵回答:
解1题因为1/x+1/y=3,所以x≠0,y≠0,1/(xy)≠0(x+y+xy+2y²)/(2xy+y²)=[(x+y+xy+2y²)×1/(xy)]/[(2xy+y²)×1/(xy)]=(1/y+1/x+1+2y/x)/(2+y/x)把1/x+1/y=3代入=(3+1+2y/x)/(2+y/x)=(4+2y/x)/(2+y/...
点击显示
数学推荐
热门数学推荐