问题标题:
高等数学求偏导数这题怎么做:xz=lntan-----y题目是z=lntanx/y希望能把这道题的步骤给我看
问题描述:
高等数学求偏导数这题怎么做:xz=lntan-----y
题目是z=lntanx/y
希望能把这道题的步骤给我看
史寅虎回答:
dz=[1/tan(x/y)]*sec^2(x/y)*[dx/y+(-x/y^2)dy]
dz/dx=2/[y*sin(2x/y)]
dz/dy=-2x/[y^2*sin(2x/y)]
dz/dx=d(lntanx/y)/dx
=(1/tan(x/y))*d(tanx/y)/dx
=(1/tan(x/y))*sec^2(x/y)*d(x/y)
=(1/tan(x/y))*sec^2(x/y)*dx/y
=2/[y*sin(2x/y)]
dz/dy=d(lntanx/y)/dy
=(1/tan(x/y))*d(tanx/y)/dy
=(1/tan(x/y))*sec^2(x/y)*d(x/y)
=(1/tan(x/y))*sec^2(x/y)*(-x/y^2)
=-2x/[y^2*sin(2x/y)]
点击显示
数学推荐
热门数学推荐