问题标题:
已知向量a=(cosα,sinα),b=(cosx,sinx),c=(sinx+2sinα,cosx+2cosα0,其中0﹤α﹤x﹤π.⑴若α=π/4,求函数f(x)=b·c的最小值及相应想的值:⑵若a与b的夹角为π/3,且a⊥才,求tan2α的值.
问题描述:
已知向量a=(cosα,sinα),b=(cosx,sinx),c=(sinx+2sinα,cosx+2cosα0,其中0﹤α﹤x﹤π.
⑴若α=π/4,求函数f(x)=b·c的最小值及相应想的值:⑵若a与b的夹角为π/3,且a⊥才,求tan2α的值.
李飚回答:
(1)∵b=(cosx,sinx),c=(sinx+2sinα,cosx+2cosα),α=π4,∴f(x)=b·c=cosxsinx+2cosxsinα+sinxcosx+2sinxcosα=2sinxcosx+2(sinx+cosx).(2分)令t=sinx+cosx(0<x<π),则2sinxcosx=t2-1,且...
点击显示
数学推荐
热门数学推荐