问题标题:
试证明x^(2/3)+y^(2/3)=a^(2/3)(a>0)的切线夹在坐标轴之间长度等于常数a
问题描述:
试证明x^(2/3)+y^(2/3)=a^(2/3)(a>0)的切线夹在坐标轴之间长度等于常数a
何广平回答:
星形线的参数方程是x=a(cosθ)^3,y=a(sinθ)^3,在点(a(cosθ)^3,a(sinθ)^3)处:dy/dx=[3a(sinθ)^2cosθ]/[3a(cosθ)^2(-sinθ)]=-tanθ切线方程为[y-a(sinθ)^3]/[x-a(cosθ)^3]=-tanθ,与x轴交于点P,令切线方程...
点击显示
数学推荐
热门数学推荐