字典翻译 问答 高中 数学 【高中数学函数周期性问题定义在R上的函数F(x)满足f(6+x)=f(x),当-3≤x﹤-1时,f(x)=-(x+2)^2,当-1≤x﹤3时,f(x)=x.则f(1)+f(2)+f(3)+f(4)+f(5)+……+f(2012)=?】
问题标题:
【高中数学函数周期性问题定义在R上的函数F(x)满足f(6+x)=f(x),当-3≤x﹤-1时,f(x)=-(x+2)^2,当-1≤x﹤3时,f(x)=x.则f(1)+f(2)+f(3)+f(4)+f(5)+……+f(2012)=?】
问题描述:

高中数学函数周期性问题

定义在R上的函数F(x)满足f(6+x)=f(x),当-3≤x﹤-1时,f(x)=-(x+2)^2,当-1≤x﹤3时,f(x)=x.则f(1)+f(2)+f(3)+f(4)+f(5)+……+f(2012)=?

史海峰回答:
  由f(6+x)=f(x),可得周期T=6   又因为当-3≤x﹤-1时,f(x)=-(x+2)^2,当-1≤x﹤3时,f(x)=x   所以f(1)=1,f(2)=2,f(3)=f(-3)=-1,f(4)=f(—2)=0,f(5)=f(-1)=-1,f(6)=f(0)=0   所以f(1)+f(2)+f(3)+f(4)+f(5)+……+f(2012)=338
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 政治
  • 地理
  • 历史
  • 化学
  • 生物
  • 物理
  • 综合
  • 高考