问题标题:
如图1,在正方形ABCD中,BD是对角线,点E在BD上,△BEG是等腰直角三角形,且∠BEG=90°,点F是DG的中点,连结EF与CF.(1)求证:EF=CF;(2)求证:EF⊥CF;(3)如图2,若等腰直角三角形△BEG
问题描述:
如图1,在正方形ABCD中,BD是对角线,点E在BD上,△BEG是等腰直角三角形,且∠BEG=90°,点F是DG的中点,连结EF与CF.
(1)求证:EF=CF;
(2)求证:EF⊥CF;
(3)如图2,若等腰直角三角形△BEG绕点B按顺时针旋转45°,其他条件不变,请判断△CEF的形状,并证明你的结论.
童锟回答:
(1)证明:∵∠BEG=90°,点F是DG的中点,∴EF=DF=12DG,∵正方形ABCD中,∠BCD=90°,点F是DG的中点,∴CF=DF=12DG,∴EF=CF;(2)证明:∵EF=DF,CF=DF,∴∠FDE=∠FED,∠FCD=∠FDC,∴∠EFC=∠EFG+∠CFG=∠FDE...
点击显示
数学推荐
热门数学推荐