问题标题:
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)证明:PC⊥AD;(2)求二面角A-PC-D的正弦值(理科);(2)求直线PB与平面PAC所成角的正弦值(文科);(3
问题描述:
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(1)证明:PC⊥AD;
(2)求二面角A-PC-D的正弦值(理科);
(2)求直线PB与平面PAC所成角的正弦值(文科);
(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.
潘潮回答:
(1)∵PA⊥平面ABCD,AD⊂平面ABCD;
∴PA⊥AD,即AD⊥PA;
又AD⊥AC,PA∩AC=A;
∴AD⊥平面PAC,PC⊂平面PAC;
∴AD⊥PC,即PC⊥AD;
(2理)如图,过A作AM⊥PC,交PC于M,并连接DM;
由(1)知PC⊥AD,∴PC⊥平面ADM,DM⊂平面ADM;
∴PC⊥DM;
∴∠AMD是二面角A-PC-D的平面角;
PC=5
点击显示
其它推荐
热门其它推荐