问题标题:
(2013•湛江)如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线
问题描述:
(2013•湛江)如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,-5).
(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有什么位置关系,并给出证明;
(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
李成国回答:
(1)设抛物线解析式为:y=a(x-3)2+4,
将A(0,-5)代入求得:a=-1,
∴抛物线解析式为y=-(x-3)2+4=-x2+6x-5.
(2)抛物线的对称轴l与⊙C相离.证明:
令y=0,即-x2+6x-5=0,得x=1或x=5,∴B(1,0),C(5,0).
如答图①所示,设切点为E,连接CE,由题意易证Rt△ABO∽Rt△BCE,
∴ABBC=OBCE
点击显示
其它推荐
热门其它推荐