问题标题:
lim(1-x)tan派x/2(x趋向1)怎么解
问题描述:
lim(1-x)tan派x/2(x趋向1)怎么解
黄学文回答:
x→1lim(1-x)tan(πx/2)=limtan(πx/2)/1/(1-x)此时,极限为∞/∞型,利用L'Hospital法则=lim(tan(πx/2))'/(1/(1-x))'=lim(π/2)/(cos(πx/2))^2/1/(1-x)^2=(π/2)*lim(1-x)^2/(cos(πx/2))^2此时,极限...
点击显示
数学推荐
热门数学推荐