问题标题:
一个数学分析问题ln((b的平方)(cosx的平方))的积分怎么求啊?上下限是从0到二分之派拜托啦(cosx)^2
问题描述:
一个数学分析问题
ln((b的平方)(cosx的平方))的积分怎么求啊?上下限是从0到二分之派
拜托啦(cosx)^2
万林回答:
∫(0,π/2)ln(b²cos²x)dx
=∫(0,π/2)[ln(b²)+ln(cos²x)]dx
=2xlnb|(0,π/2)+2∫(0,π/2)ln(cosx)dx
考虑第二项
∫(0,π/2)ln(cosx)dx
=∫(π/2,0)ln[cos(π/2-t)d(π/2-t)
=∫(0,π/2)ln(sint)dt
=∫(0,π/2)ln(sinx)dx
∴∫(0,π/2)ln(sinx)dx
=∫(0,π/2)ln(cosx)dx
=∫(0,π/4)ln(cosx)dx+∫(π/4,π/2)ln(cosx)dx
=∫(0,π/4)ln(cosx)dx+∫(π/4,0)ln[cos(π/2-t)]d(π/2-t)
=∫(0,π/4)ln(cosx)dx+∫(0,π/4)ln(sint)dt
=∫(0,π/4)ln(cosx)dx+∫(0,π/4)ln(sinx)dx
=∫(0,π/4)[ln(cosx)+ln(sinx)]dx
=∫(0,π/4)ln[(sin2x)/2]dx
=∫(0,π/4)[ln(sin2x)-ln2]dx
=(1/2)∫(0,π/4)ln(sin2x)d(2x)-(π/4)ln2
=(1/2)∫(0,π/2)ln(sint)dt-(π/4)ln2
=(1/2)∫(0,π/2)ln(sinx)dx-(π/4)ln2
∴∫(0,π/2)ln(sinx)dx
=∫(0,π/2)ln(cosx)dx
=-(π/2)ln2
于是∫(0,π/2)ln(b²cos²x)dx
=2xlnb|(0,π/2)+2∫(0,π/2)ln(cosx)dx
=πlnb-πln2
=πln(b/2)
点击显示
数学推荐
热门数学推荐