问题标题:
【已知:关于x的一元二次方程ax2+2(a-3)x+a+3=0有两个实数根,且a为非负整数.(1)求a的值;(2)若抛物线y=ax2+2(a-3)x+a+3向下平移m(m>0)个单位后过点(1,n)和点(2,2n+1),求m的值;】
问题描述:
已知:关于x的一元二次方程ax2+2(a-3)x+a+3=0有两个实数根,且a为非负整数.
(1)求a的值;
(2)若抛物线y=ax2+2(a-3)x+a+3向下平移m(m>0)个单位后过点(1,n)和点(2,2n+1),求m的值;
(3)若抛物线y=ax2+2(a-3)x+a+3+k上存在两个不同的点P、Q关于原点对称,求k的取值范围.
屈宁回答:
(1)依题意,得△=[2(a-3)]2-4a(a+3)=-36a+36≥0,
解得a≤1,
又a≠0且a为非负整数,
∴a=1,
∴y=x2-4x+4.
(2)解法一:
抛物线y=x2-4x+4过点(1,1),(2,0),
向下平移m(m>0)个单位后得到点(1,n)和点(2,2n+1)
∴0−(2n+1)=m1−n=m
点击显示
数学推荐
热门数学推荐