问题标题:
△ABC中,AD⊥BC,AE平分∠BAC,AG⊥AE,CG是△ABC外角∠ACF的平分线,若∠G-∠DAE=60°,则∠ACB=______.
问题描述:
△ABC中,AD⊥BC,AE平分∠BAC,AG⊥AE,CG是△ABC外角∠ACF的平分线,若∠G-∠DAE=60°,则∠ACB=______.
郭琦回答:
∵AD⊥BC,
∴∠CAD=90°-∠ACB,
∵AG⊥AE,
∴∠CAG=90°-∠CAD-∠DAE=90°-(90°-∠ACB)-∠DAE=∠ACB-∠DAE.
∵CG是△ABC外角∠ACF的平分线,
∴∠ACG=∠FCG=(180°-∠ACB)÷2=90°-12
点击显示
数学推荐
热门数学推荐