问题标题:
【已知抛物线y=x2+(2n-1)x+n2-1(n为常数).(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;(2)设A是(1)所确定的抛物线上位于x轴下方、且在对称轴】
问题描述:
已知抛物线y=x2+(2n-1)x+n2-1(n为常数).
(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;
(2)设A是(1)所确定的抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作AB⊥x轴于B,DC⊥x轴于C.
①当BC=1时,求矩形ABCD的周长;
②试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标.如果不存在,请说明理由.
崔庆权回答:
(1)由已知条件,得n2-1=0解这个方程,得n1=1,n2=-1当n=1时,得y=x2+x,此抛物线的顶点不在第四象限.当n=-1时,得y=x2-3x,此抛物线的顶点在第四象限.∴所求的函数关系为y=x2-3x;(2)由y=x2-3x,令y=0,得x2-3...
点击显示
数学推荐
热门数学推荐