问题标题:
用三重积分求由曲面Z=X2+2Y2及Z=6-2X2-Y2所围成的立体的体积.
问题描述:
用三重积分求由曲面Z=X2+2Y2及Z=6-2X2-Y2所围成的立体的体积.
亢雪英回答:
Ω由z=x²+2y²及2x²+y²=6-z围成.
消掉z得投影域D:
x²+2y²=6-2x²-y²
==>x²+y²≤2
体积=∫∫∫ΩdV
=∫(-√2→√2)dx∫(-√(2-x²)→√(2-x²))dy∫(x²+2y²→6-2x²-y²)dz
=4∫(0→√2)dx∫(0→√(2-x²))[(6-2x²-y²)-(x²+2y²)]dy
=12∫(0→√2)dx∫(0→√(2-x²))(2-x²-y²)dy
=12∫(0→π/2)dθ∫(0→√2)(2-r²)rdr
=12*π/2*∫(0→√2)(2r-r³)dr
=6π*(r²-r⁴/4):0→√2
=6π*(2-4/4)
=6π
万明习回答:
∫(x²+2y²→6-2x²-y²)dz这里是怎么来的?不懂。。为什么要相减?
亢雪英回答:
6-2x²-y²在上面x²+2y²在下面所以(6-2x²-y²)-(x²+2y²)z的范围由x²+2y²变到6-2x²-y²
点击显示
数学推荐
热门数学推荐