问题标题:
【以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连结AO,如果AB=4,AO=6根号2,那么AC的长等于()】
问题描述:
以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连结AO,如果AB=4,AO=6根号2,那么AC的长等于()
林贵平回答:
在AC上取一点G,使CG=AB=4,连接OG,如图:
∵∠ABO=90°-∠AHB
∠OCG=90°-∠OHC
又∠AHB=∠OHC(对顶角相等)
∴∠ABO=∠OCG
∵OB=OC,AB=CG
∴△OAB≌△OCG(SAS)
∴OG=OA=6√2,∠BOA=∠COG
∵∠COG+∠GOH=90°
∴∠BOA+∠GOH=90°
即∠AOG=90°
∴△AOG是等腰直角三角形
由勾股定理得:
AG=√(OA²+OG²)=12
∴AC=AG+GC=12+4=16
点击显示
其它推荐
热门其它推荐