字典翻译 问答 高中 数学 数学圆锥曲线得题,回答必有重谢1.椭圆x^2/a^2+y^2/b^2=1上有一个动点,若A为长轴的右端点,B为短轴上的端点,求四边形OAPB的面积的最大值及此时的点P的坐标2.抛物线的定点再远点,其准线过双曲线x
问题标题:
数学圆锥曲线得题,回答必有重谢1.椭圆x^2/a^2+y^2/b^2=1上有一个动点,若A为长轴的右端点,B为短轴上的端点,求四边形OAPB的面积的最大值及此时的点P的坐标2.抛物线的定点再远点,其准线过双曲线x
问题描述:

数学圆锥曲线得题,回答必有重谢

1.椭圆x^2/a^2+y^2/b^2=1上有一个动点,若A为长轴的右端点,B为短轴上的端点,求四边形OAPB的面积的最大值及此时的点P的坐标

2.抛物线的定点再远点,其准线过双曲线x^2/a^2-y^2/b^2=1的一个焦点,又若抛物线与双曲线相交于点A(3/2,√6),B(3/2,-√6),求此双曲线方程

3.若点P在抛物线y^2=x上,点Q在圆(x-3)^2+y^2=1上,求PQ绝对值得最小值

皮大伟回答:
  (1)四边形OAPB面积=三角型oab+opa,若要使oapb的面积最大,opa应为最大所以p点坐标应是(0,-b),四边形opab的面积是ab(2)由题意可设抛物线方程y^2=2p(x+p/2)带入(3/2,√6)可得p=1/2*√33-3/2由于其准线过焦点所以a^2+b...
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 政治
  • 地理
  • 历史
  • 化学
  • 生物
  • 物理
  • 综合
  • 高考