问题标题:
【小明同学平时爱好数学,他探索发现了:从2开始,连续的几个偶数相加,它们和的情况变化规律,如表所示:加数的个数n连续偶数的和S12=1×222+4=6=2×332+4+6=12=3×442+4】
问题描述:
小明同学平时爱好数学,他探索发现了:从2开始,连续的几个偶数相加,它们和的情况变化规律,如表所示:
加数的个数n | 连续偶数的和S |
1 | 2=1×2 |
2 | 2+4=6=2×3 |
3 | 2+4+6=12=3×4 |
4 | 2+4+6+8=20=4×5 |
5 | 2+4+6+8+10=30=5×6 |
(1)如果n=8时,那么S的值为______;
(2)根据表中的规律猜想:用n的代数式表示S,则S=2+4+6+8+…+2n=______;
(3)利用上题的猜想结果,计算300+302+304+…+2010+2012的值(要有计算过程).
彭光正回答:
(1)当n=8时,那么S=2+4+6+8+10+12+14+16=8×9=72;
(2)∵2=1×2,
2+4=6=2×3,
2+4+6=12=3×4,
2+4+6+8=20=4×5,
2+4+6+8+10=30=5×6,
∴S=2+4+6+8+…+2n=2(1+2+3+…+n)=n(n+1);
(3)300+302+304+…+2010+2012
=(2+4+6+…+298+300+302+304+…+2010+2012)-(2+4+6+…+298)
=1006×1007-149×150=1013042-22350=990692.
故答案为:(1)72;(2)n(n+1).
点击显示
数学推荐
热门数学推荐