问题标题:
如图,已知CD平分∠ACB,交AB于D,AE∥CD,交BC的延长线于点E,且∠E=60°.你认为△ACE是什么三角形?请说明理由.
问题描述:
如图,已知CD平分∠ACB,交AB于D,AE∥CD,交BC的延长线于点E,且∠E=60°.你认为△ACE是什么三角形?请说明理由.
芦文龙回答:
△ACE是等边三角形,
理由是:∵AE∥CD,∠E=60°,
∴∠DCB=∠E=60°,
∵CD平分∠ACB,
∴∠ACB=2∠BCD=120°,
∴∠ACE=180°-120°=60°,
∴∠CAE=180°-60°-60°=60°,
∴∠E=∠CAE=∠ACE,
∴△ACE是等边三角形.
点击显示
数学推荐
热门数学推荐