字典翻译 问答 小学 数学 设函数其中,曲线在点处的切线方程为.(I)确定的值;(II)设曲线在点处的切线都过点(0,2).证明:当时,;(III)若过点(0,2)可作曲线的三条不同切线,求
问题标题:
设函数其中,曲线在点处的切线方程为.(I)确定的值;(II)设曲线在点处的切线都过点(0,2).证明:当时,;(III)若过点(0,2)可作曲线的三条不同切线,求
问题描述:

设函数其中,曲线在点处的切线方程为.
(I)确定的值;
(II)设曲线在点处的切线都过点(0,2).证明:当时,;
(III)若过点(0,2)可作曲线的三条不同切线,求的取值范围.

苏青回答:
  设函数其中,曲线在点处的切线方程为.(I)确定的值;(II)设曲线在点处的切线都过点(0,2).证明:当时,;(III)若过点(0,2)可作曲线的三条不同切线,求的取值范围.(I),;(II)详见试题解析;(III)的取值范围是.      试题分析:(I)根据导数的几何意义,首先对函数求导,可得,由已知:曲线在点处的切线方程为,从而可得的值及,又,故得;(II)先利用导数的几何意义,求出在点处的切线方程为,而点在切线上,所以,化简即得满足的方程为,下面利用反证法明当时,;(III)由(II)知,过点可作的三条切线,等价于方程有三个相异的实根,即等价于方程有三个相异的实根.构造函数,利用导数求函数的极大值、极小值,只要的极大值与极小值异号即可,解这个不等式组即可求得的取值范围.   试题解析:(I)由又由曲线处的切线方程为,得故   (II)处的切线方程为,而点在切线上,所以,化简得,即满足的方程为
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 科学
  • 作文