问题标题:
大一高等数学求极限1.[㏑(x-π/2)]/tanx当x趋于π/2时的极限2cotx-1/x当x趋于0的极限3(x^3+x^2+x+1)^1/3-x当x趋于∞时的极限
问题描述:
大一高等数学求极限
1.[㏑(x-π/2)]/tanx当x趋于π/2时的极限
2cotx-1/x当x趋于0的极限
3(x^3+x^2+x+1)^1/3-x当x趋于∞时的极限
刘利回答:
1.[㏑(x-π/2)]/tanx当x趋于π/2时的极限
=lim(x->π/2)1/(x-π/2)/sec²x
=lim(x->π/2)cos²x/(x-π/2)
=lim(x->π/2)2cosx(-sinx)/1
=0
2.
lim(x->0)cotx-1/x
=lim(x->0)xosx/sinx-1/x
=lim(x->0)(xcosx-sinx)/xsinx
=lim(x->0)(xcosx-sinx)/x²
=lim(x->0)(cosx-xsinx-cosx)/2x
=lim(x->0)(-xsinx)/2x
=lim(x->0)(-sinx)/2
=0
3.(x^3+x^2+x+1)^1/3-x
=lim(x->∞)e^ln(x^3+x^2+x+1)^1/3-x
=lim(x->∞)e^[ln(x^3+x^2+x+1)]/(3-x)
=e^lim(x->∞)1/(x^3+x^2+x+1)*(3x²+2x+1)/(-1)
=e^lim(x->∞)-(3x²+2x+1)/(x^3+x^2+x+1)
=e^lim(x->∞)-(6x+2)/(3x^2+2x+1)
=e^lim(x->∞)-(6)/(6x+2)
=e^0
=1
谭南林回答:
=lim(x->∞)e^[ln(x^3+x^2+x+1)]/(3-x)这一步有问题吧?后面的-x是脱离e^……的呀,怎么变的??
刘利回答:
ln(x^3+x^2+x+1)^1/3-x=1/(3-x)ln(x^3+x^2+x+1)=[ln(x^3+x^2+x+1)]/(3-x)
谭南林回答:
抱歉啊,我写的好像有点问题(x^3+x^2+x+1)^(1/3)-x
刘利回答:
这个题目,我给你思路,自己做吧令x=1/tx->∞,t->0
点击显示
数学推荐
热门数学推荐