问题标题:
【如图,已知AB是⊙O的直径,且AB=12,AP是半圆的切线,点C是半圆上的一动点(不与点A、B重合),过点C作CD⊥AP于点D,记∠COA=α.(1)当α=60°时,求CD的长;(2)当α为何值时,CD与⊙O相切】
问题描述:
如图,已知AB是⊙O的直径,且AB=12,AP是半圆的切线,点C是半圆上的一动点(不与点A、B重合),过点C作CD⊥AP于点D,记∠COA=α.
(1)当α=60°时,求CD的长;
(2)当α为何值时,CD与⊙O相切?说明理由;
(3)当AD=3
2
钱振宇回答:
(1)作CE⊥AB于点E.在直角△OCE中,OE=OC•cos∠COA=12×6=3,则CD=OA-OE=6-3=3;(2)∠α=90°,CD与⊙O相切.理由:当∠α=90°,则在四边形OCDA中,∠COA=∠OAD=∠CDA=90°,∴∠OCD=90°,∴OC⊥CD,∴CD是⊙...
点击显示
其它推荐