问题标题:
已知1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6,则1^2+3^2+...+(2n+1)^2=?
问题描述:
已知1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6,则1^2+3^2+...+(2n+1)^2=?
李凤山回答:
2^2+4^2+...+(2n)^2
=2^2(1^2+2^2+..+n^2)
=4n(n+1)(2n+1)/6
1^2+2^2+...+(2n+1)^2=(2n+1)(2n+2)(2n+3)/6
1^2+3^2+...+(2n+1)^2
=1^2+2^2+...+(2n+1)^2-(2^2+4^2+...+(2n)^2)
=(2n+1)(2n+2)(2n+3)/6-4n(n+1)(2n+1)/6
=[(n+1)(2n+1)/3]((2n+3)-2n)
=(n+1)(2n+1)
点击显示
数学推荐
热门数学推荐