问题标题:
在△ABC中,角A,B,C的对边分别为a,b,c,已知A=π/4,bsin(π/4+C)-csin(π/4+B)=a(1)求证:B-C=π/2(2)若a=根号二,求△ABC的面积.不要复制第一个回答我没看懂
问题描述:
在△ABC中,角A,B,C的对边分别为a,b,c,已知A=π/4,bsin(π/4+C)-csin(π/4+B)=a(1)求证:B-C=π/2(2)若a=根号二,求△ABC的面积.
不要复制第一个回答我没看懂
鲁佳琪回答:
1)∵bsin(π/4+C)-csin(π/4+B)=a,
∴由正弦定理可得sinBsin(π/4+C)-sinCsin(π4+B)=sinA.
∴sinB(√2sinC/2+√2cosC/2)-sinC(√2sinB/2+√2cosB/2)=√2/2.
整理得sinBcosC-cosBsinC=1,
即sin(B-C)=1,
由于0<B,C<3π/4,从而B-C=π/2.
(2)∵B+C=π-A=3π/4∴B=5π/8,C=π/8,
∵a=√2,A=π/4
∴b=asinB/sinA=2sin5π/8,c=asinC/sinA=2sinπ/8,
所以三角形的面积S=bcsinA/2=√2sin5π/8sinπ/8=√2cosπ/8sinπ/8=1/2
点击显示
数学推荐
热门数学推荐