问题标题:
【已知向量a的模=2向量b的模=1a与b的夹角为60度向量u=向量a+xbv=a-b1.证明对于任意实数x则u与v的夹角为锐角2.求实数x使u与v的夹角为30度】
问题描述:
已知向量a的模=2向量b的模=1a与b的夹角为60度向量u=向量a+xbv=a-b
1.证明对于任意实数x则u与v的夹角为锐角
2.求实数x使u与v的夹角为30度
宁安琪回答:
解析:∵u.v=(a+xb)(a-b)=a^2+(x-1)a.b-xb^2
=4+(x-1)*2*1*cos60°-x
=3
cos=u.v/│u│*│v│
=3/│u│*│v│>0,
∴对于任意实数x则u与v的夹角为锐角.
∵│u│=√[a+bx]^2=√[a^2+2abx+x^2*b^2]
=√[4+2x+x^2]
│v│=√[a-b]^2=√[a^2-2ab+b^2]
=√[4-2+1]=√3
∴cos30°=3/√[4+2x+x^2]*√3=√3/2
得x^2+2x=0,
x=0,或x=-2
点击显示
数学推荐
热门数学推荐