问题标题:
【已知:如图,四边形ABCD内接于⊙O,过点A的切线与CD的延长线交于E,且∠ADE=∠BDC.(1)求证:△ABC为等腰三角形;(2)若AE=6,BC=12,CD=5,求AD的长.】
问题描述:
已知:如图,四边形ABCD内接于⊙O,过点A的切线与CD的延长线交于E,且∠ADE=∠BDC.
(1)求证:△ABC为等腰三角形;
(2)若AE=6,BC=12,CD=5,求AD的长.
刘均回答:
(1)证明:∵四边形ABCD内接于⊙O∴∠ADE=∠ABC∵∠BDC=∠ADE∴∠BAC=∠BDC∴∠ABC=∠BAC∴BC=AC∴△ABC为等腰三角形;(2)∵AE切⊙O于点A∴∠EAD=∠ACE∵∠AED=∠CEA∴△AED∽△CEA∴AE2=ED•EC=ED•(ED+CD)∵A...
点击显示
数学推荐
热门数学推荐