问题标题:
样本方差总体方差假定X1,X2,...,Xn为来自总体的重置简单随机样本,总体均值为μ、方差σ^2,Xˉ为样本均值.由于在重置随机抽样中,各个样本单位的抽取完全是等可能的,因此有E(Xˉ)=E(1/n·∑Xi
问题描述:
样本方差总体方差
假定X1,X2,...,Xn为来自总体的重置简单随机样本,总体均值为μ、方差σ^2,Xˉ为样本均值.由于在重置随机抽样中,各个样本单位的抽取完全是等可能的,因此有
E(Xˉ)=E(1/n·∑Xi)
=1/n·∑E(Xi)
=1/n·∑μ
=μ
Var(Xˉ)=Var(1/n·∑Xi)
=1/n^2∑Var(Xi)
=σ^2/n
请问Var(1/n·∑Xi)=1/n^2∑Var(Xi)为什么会相等?
吕德祥回答:
首先有结论:当诸Xi相互独立时,Var(∑Xi)=∑Var(Xi),证明的话用协方差Var(∑Xi)=Cov(∑Xi,∑Xi)=∑Cov(Xi,Xj)=∑Var(Xi)然后可得到:Var(1/n·∑Xi)=Cov(1/n·∑Xi,1/n·∑Xi)=1/n^2Cov(∑Xi,∑Xi)=1/...
点击显示
数学推荐
热门数学推荐