字典翻译 作文 读后感作文 读书笔记 《几何原本》读书笔记个人收获

《几何原本》读书笔记个人收获

读书笔记   2024-11-30

  公理化结构是近代数学的主要特征。而《原本》是完成公理化结构的最早典范,它产生于两千多年前,这是难能可贵的。不过用现代的标准去衡量,也有不少缺点。首先,一个公理系统都有若干原始概念,或称不定义概念,作为其他概念定义的基础。点、线、面就属于这一类。而在《原本》中一一给出定义,这些定义本身就是含混不清的。其次是公理系统不完备,没有运动、顺序、连续性等公理,所以许多证明不得不借助于直观。此外,有的公理不是独立的&1年,他发现了新的研究结果,这个结果可以判断一个正多边形“能作”或“不能作”的准则。判断这个问题是否可作,首先把问题化为代数方程。

  然后,用代数方法来判断。判断的准则是:“对一个几何量用直尺和圆规能作出的充分必要条件是:这个几何量所对应的数能由已知量所对应的数,经有限次的加、减、乘、除及开平方而得到。”(圆周率不可能如此得到,它是超越数,还有e、刘维尔数都是超越数,我们知道,实数是不可数的,实数分为有理数和无理数,其中有理数和一部分无理数,比如根号2,是代数数,而代数数是可数的,因此实数中不可数是因为超越数的存在。虽然超越数比较多,但要判定一个数是否为超越数却不是那么的简单。)至此,“三大难题”即“化圆为方、三等分角、二倍立方体”问题是用尺规不能作出的作图题。正十七边形可作,但其作法不易给出。高斯(Gauss)在1796年19岁时,给出了正十七边形的尺规作图法,并作了详尽的讨论。为了表彰他的这一发现,他去世后,在他的故乡不伦瑞克建立的纪念碑上面刻了一个正十七边形。

  几何中连续公理的引入。由欧氏公设、公理不能推出作图题中“交点”存在。因为,其中没有连续性(公理)概念。这就需要给欧氏的公理系统中添加新的公理——连续性公理。虽然19世纪之前费马与笛卡尔已经发现解析几何,代数有了长驱直入的进展,微积分进入了大学课堂,拓扑学和射影几何已经出现。但是,数学家对数系理论基础仍然是模糊的,没有引起重视。直观地承认了实数与直线上的点都是连续的,且一一对应。直到19世纪末叶才完满地解决了这一重大问题。从事这一工作的学者有康托(Cantor)、戴德金(Dedekind)、皮亚诺(Peano)、希尔伯特(Hilbert)等人。

  当时,康托希望用基本序列建立实数理论,代德金也深入地研究了无理数理念,他的一篇论文发表在1872年。在此之前的1858年,他给学生开设微积分时,知道实数系还没有逻辑基础的保证。因此,当他要证明“单调递增有界变量序列趋向于一个极限”时,只得借助于几何的直观性。

  实际上,“直线上全体点是连续统”也是没有逻辑基础的。更没有明确全体实数和直线全体点是一一对应这一重大关系。如,数学家波尔查奴(Bolzano)把两个数之间至少存在一个数,认为是数的连续性。实际上,这是误解。因为,任何两个有理数之间一定能求到一个有理数。但是,有理数并不是数的全体。有了戴德金分割之后,人们认识至波尔查奴的说法只是数的稠密性,而不是连续性。由无理数引发的数学危机一直延续到19世纪。直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数,并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机。

  《原本》还研究了其它许多问题,如求两数(可推广至任意有限数)最大公因数,数论中的素数的个数无穷多等。

  在高等数学中,有正交的概念,最早的概念起源应该是毕达哥拉斯定理,我们称之为勾股定理,只是勾3股4弦5是一种特例,而毕氏定理对任意直角三角形都成立。并由毕氏定理,发现了无理数根号2。在数学方法上初步涉及演绎法,又在证明命题时用了归谬法(即反证法)。可能由于受丢番图(Diophantus)对一个平方数分成两个平方数整数解的启发,350多年前,法国数学家费马提出了著名的费马大定理,吸引了历代数学家为它的证明付出了巨大的努力,有力地推动了数论用至整个数学的进步。1994年,这一旷世难题被英国数学家安德鲁威乐斯解决。

  多少年来,千千万万人(著名的有牛顿(Newton)、阿基米德(Archimedes)等)通过欧几里得几何的学习受到了逻辑的训练,从而迈入科学的殿堂。

点击显示
标签: 母爱 作文
将本文的Word文档下载,方便收藏打印
不够精彩? 再来一篇 我要投稿
字典翻译专稿内容,转载请注明出处,来源链接: http://mip.zidianfy.com/zdfyzw-1119471/
读书笔记推荐
热门读书笔记推荐
  • 古诗文
  • 外国名著
  • 选读推荐
  • 观后感
  • 小学生读后感
  • 初中读后感
  • 高中读后感
  • 读书笔记
  • 读书心得
  • 其他读后感