字典翻译 作文 读后感作文 其他读后感 大学生《几何原本》读后感

大学生《几何原本》读后感

其他读后感   2025-01-09

  数学中最古老的一门分科。据说是起源于古埃及尼罗河泛滥后为整修土地而产生的测量法,它的外国语名称geometry就是由geo(土地)与metry(测量)组成的。泰勒斯曾经利用两三角形的等同性质,做了间接的测量工作;毕达哥拉斯学派则以勾股定理等著名。在中国古代早有勾股测量,汉朝人撰写的《周髀算经》的第一章叙述了西周开国时期(约公元前1000)周公姬旦同商高的问答,讨论用矩测量的方法,得出了著名的勾股定律,并举出了勾三、股四、弦五的例子。在埃及产生的几何学传到希腊,然后逐步发展起来而变为理论的数学。哲学家柏拉图(公元前429~前348)对几何学作了深奥的探讨,确立起今天几何学中的定义、公设、公理、定理等概念,而且树立了哲学与数学中的分析法与综合法的概念。此外,梅内克缪斯(约公元前340)已经有了圆锥曲线的概念。

  希腊文化以柏拉图学派的时代为顶峰,以后逐渐衰落,而埃及的亚历山大学派则渐渐繁荣起来,它长时间成了文化的中心。欧几里得把至希腊时代为止所得到的数学知识集其大成,编成十三卷的《几何原本》,这就是直到今天仍广泛地作为几何学的教科书使用下来的欧几里得几何学(简称欧氏几何)。徐光启于1606年翻译了《几何原本》前六卷,至1847年李善兰才把其余七卷译完。几何与其说是geo的音译,毋宁解释为大小较为妥当。诚然,现代几何学是有关图形的一门数学分科,但是在希腊时代则代表了数学的全部。欧几里得在《几何原本》中首先叙述了一些定义,然后提出五个公设和五个公理。其中第五公设尤为著名:如果两直线和第三直线相交而且在同一侧所构成的两个同侧内角之和小于二直角,那么这两直线向这一侧适当延长后一定相交。《几何原本》中的公理系统虽然不能说是那么完备,但它恰恰成了现代几何学基础论的先驱。直到19世纪末,D.希尔伯特才建立了严密的欧氏几何公理体系。

  第五公设和其余公设相比较,内容显得复杂,于是引起后来人们的注意,但用其余公设来推导它的企图,都失败了。这个公设等价于下述的公设:在平面上,过一直线外的一点可引一条而且只有一条和这直线不相交的直线。.И.罗巴切夫斯基和J.波尔约独立地创建了一种新几何学,其中扬弃了第五公设而代之以另一公设:在平面上,过一直线外的一点可引无限条和这直线不相交的直线。这样创建起来的无矛盾的几何学称为双曲的非欧几里得几何。(G.F.)B.黎曼则把第五公设换作在平面上,过一直线外的一点所引的任何直线一定和这直线相交,这样创建的无矛盾的几何学称椭圆的非欧几里得几何。

点击显示
标签: 豆豆 读书 笔记
将本文的Word文档下载,方便收藏打印
不够精彩? 再来一篇 我要投稿
字典翻译专稿内容,转载请注明出处,来源链接: http://mip.zidianfy.com/zdfyzw-1266919/
其他读后感推荐
热门其他读后感推荐
  • 古诗文
  • 外国名著
  • 选读推荐
  • 观后感
  • 小学生读后感
  • 初中读后感
  • 高中读后感
  • 读书笔记
  • 读书心得
  • 其他读后感