大学生《九章算术》读后感
《九章算术》在很多方面有突出的成就,反映了这一时期我国数学的发展水平。其成就最突出地表现在分数运算,比例问题和盈不足算法方面。作为世界上最早系统叙述分数运算的著作,它在方田章中论述了约分、通分、比较不同分母分数的大小以及分数的四则运算。通分时它运用的是辗转相减法。在粟米、衰分、均输各章中涉及了许多比例问题,这在世界上也是最早的。比如今有术,也就是四项比例算法,可用公式表述为:所求数=(所有数所求率)除所有率,即所求数:所求率=所有数:所有率,它的应用非常广泛,其它如衰分术、反衰术等都是由此推演、发展而来的各种算法。可见其重要性。盈不足术是我国古代解算难题方法,也是一项创造,如人出八盈三,人出七则不足四,问人数物价各几何,它需要两次假设才能得出答案,有人认为欧洲中世纪所称双设法就是这一方法经由阿拉伯传去的。
其次,在几何学方面也有杰出的成就,这时的几何学主要用于面积、体积计算。
其三,在代数方面的主要成就主要是一次方程组解法,负数概念的引入及其加减法法则,开平方,开立方,一般二次方程解法等。《九章算术》方程共18问,有的相当于二元一次方程组,有的相当于三元一次方程组,甚至有多达五个未知数的,而其中第13题涉及6个未知数,却只能列5个一次方程组,可以说是世界上最早的一次不定方程组。再有,开平方术,开立方术不但可解二项二次方程,二项三次方程,而且也可以解一般的二次数值方程和三次数值方程。它是我国古代解高次数值方程的基础,与线性方程组的解法一起,构成我国古代代数学的主要内容,《九章算术》对此阐述得十分详尽,足以标示这时期的代数学发展水平和所取得的成就,在我国数学史上占有重要的地位。
数学是研究现实世界中数量和空间关系的科学,《九章算术》中将数量关系和空间形式结合起来,成为其一大特色。
《九章算术》在我国和世界数学史上具有十分重要的地位。欧洲在16世纪才有人研究三元一次方程组,而线性方程组的理论及解法乃是18世纪末叶才出现的,这种比较足以见其先进性。
在我国先秦的典籍中,记录了不少数学知识,却没有《九章算术》那样的系统论叙,尤其是其由易到难,由浅入深,从简单到复杂的编排体例,从而形成了中国传统数学的理论体系。因而后世的数学家,大都从此开始学习和研究,唐宋时是国家明令规定的教科书,北宋时由政府刊刻,又是世界上最早的印刷本数学书。隋唐时就已传入朝鲜、日本,现已被译成日、俄、德、法等多种文字2022。作为中国古代数学的系统总结,《九章算术》对中国传统数学的发展产生了极其深远的影响,在世界数学史上具有十分重要的地位。